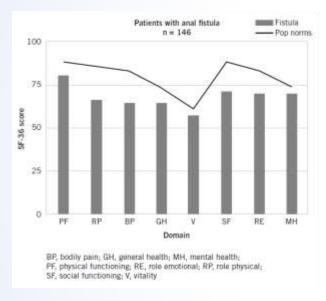
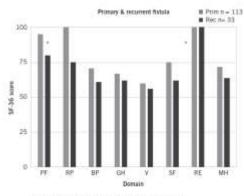
Swiss Coloproctology Study Group Bern 2019

Recurrent Anal Fistula

Janindra Warusavitarne
Consultant Colorectal Surgeon and Surgical IBD Lead, St Mark's Hospital,
London, UK.

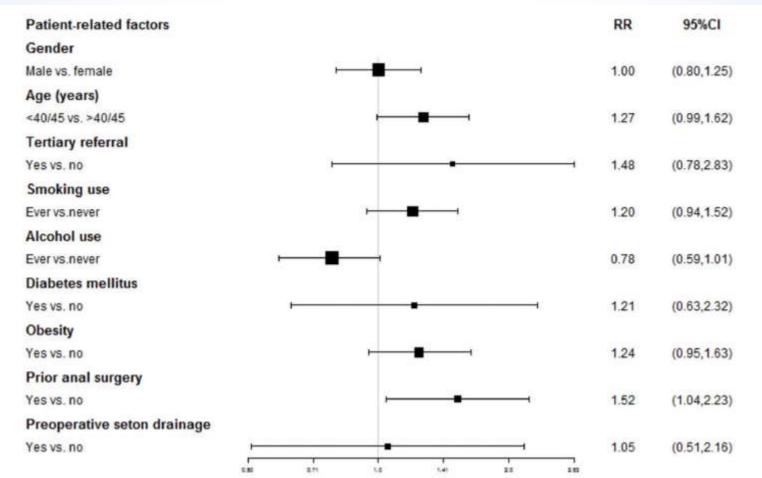

The questions I have to answer today

- What makes fistulas not heal
- Which is the best operation to achieve healing



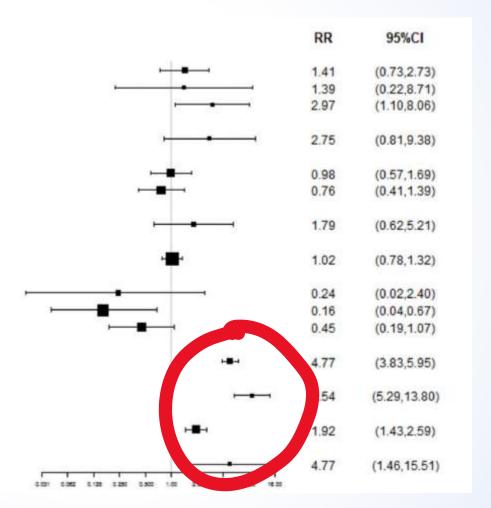
Quality of life when you have an anal fistula

Having anal fistula has an effect of quality of life



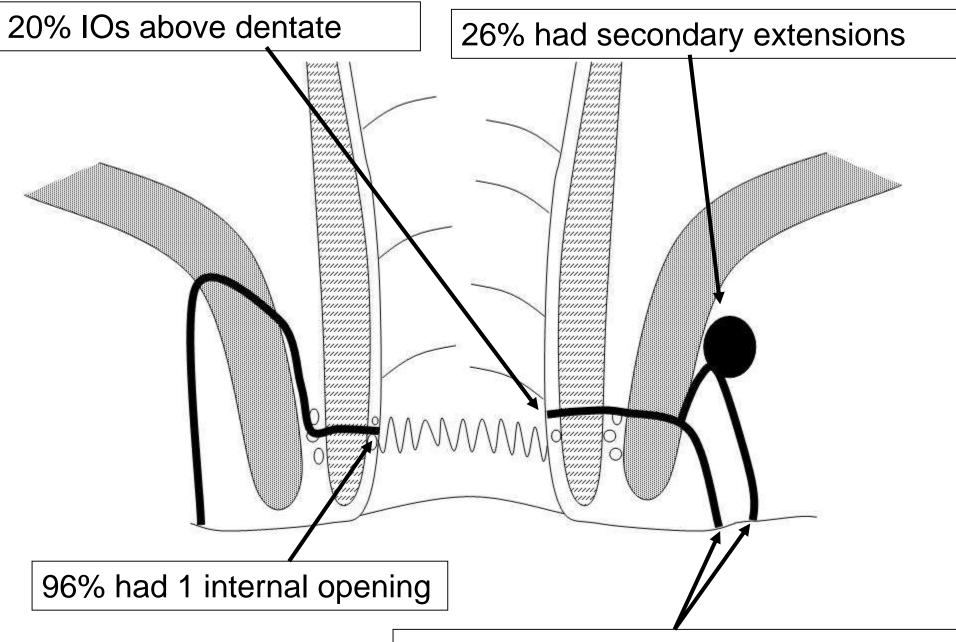
It is worse when the fistula is

BP; bodily pain, GH, general neath, MH, mental health, PF, physical functioning; RE, role emotional; RP, role physical, ST, social functioning; V, vitality

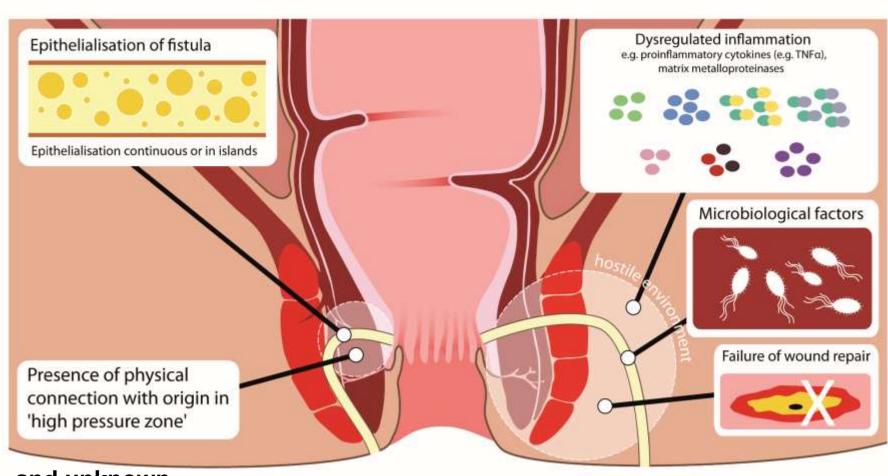

St Mark's Hospital and Academic Institute

factors influencing healing

Variable	Category	No Cure N (%)	Cure N (%)	P-value
Operation type	Lay Open	5 (11%)	39 (89%)	<0.001
	Seton	20 (90%)	2 (9%)	
Type fistula tract	Intersphincteric	2 (25%)	6 (75%)	0.04
	Low TS	2 (13%)	13 (87%)	
	Mid/High TS	17 (49%)	18 (51%)	
Time to referral (grouped) Imperial College	< 1 year	2 (12%)	15 (88%)	0.03
	1-2 years	5 (38%)	8 (62%)	
	> 2 years	15 (50%)	15 (50%) St Mark's	Hospital


London

Fistula and surgery-related factors Surgical procedure Fistulectomy vs.fistulotomy Advancement flap vs.fistulotomy Seton placement vs.fistulotomy Height of internal opening High vs.low Location of internal opening Lateral vs.posterior Anterior vs. posterior Supralevator extension Yes vs. no Postoperative drainage Yes vs. no Type of fistula Intersphincteric vs. suprasphincteric Low transsphincteric vs. suprasphincteric High transsphincteric vs. suprasphincteric Fistula classification High transsphincteric vs. low transsphincteric Internal opening detect Yes vs. no Horseshoe extension Yes vs. no No. of fistula tracts Multiple vs.single


22% had 2 or more external openings

But its not that simple

and unknown unknowns

Imperial College London

St Mark's Hospital and Academic Institute

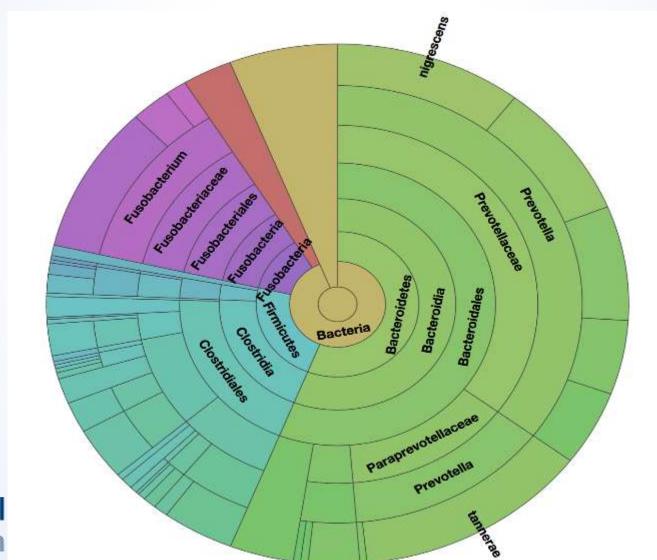
Is infection the driving force behind fistula?

Examining idiopathic fistula tracts

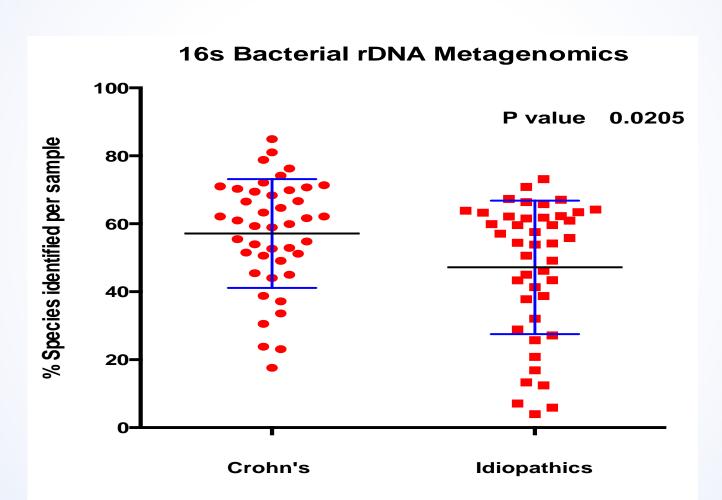
- 23 tract samples
 - 1 with florid bacteria (+ve control, 43yo f IPD)
 - 22 with zero bacteria found (4 unwashed, 14 confirmed on Gram stain)

22 cases showed no interface bacteria <u>lumen</u>

comment


- bugs are there but were missed for technical reasons
 - potentially absent biofilm/epithelium
 - because of wash in theatre/lab
- bugs do not drive anal fistula

16S Bacterial Metagenomics



Hospital lemic Institute

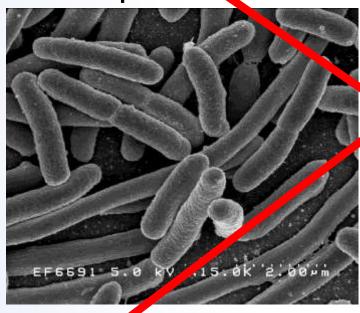
16s Bacterial rDNA Metagenomics

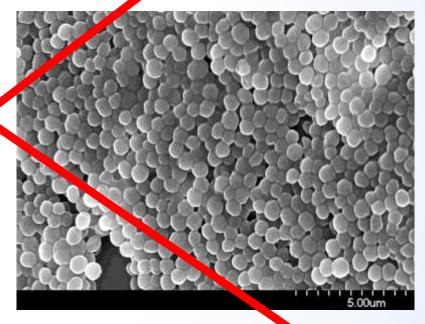
Hospital

Summary

Dysregulated immune response

Crohn's fistulae have more diverse microbiota


Microbiome – immune system interaction

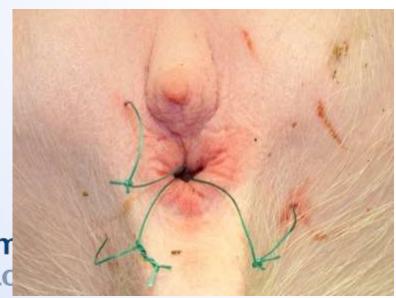


infection

idiopathic fistula

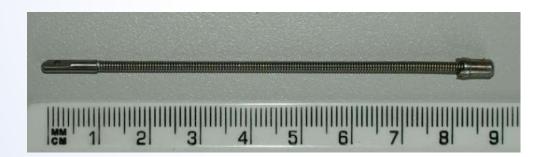
Crobn's related

enrichment media



St Mark's Hospital and Academic Institute

pig model of anal fistula



reaming – core out tract

- circumferentially removing granulation tissue and epithelium
- high speed, flexible shaft reamer

bioglue

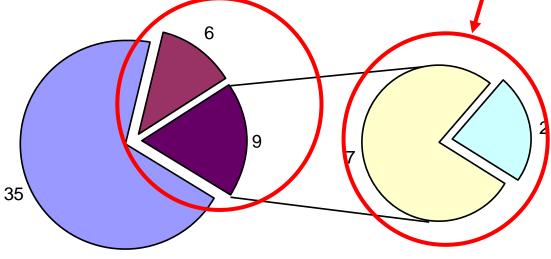
- prepared from injectable Permacol™
 - acellular porcine dermal collagen
- centrifugation process
 - produces a thicker consistency
- +/- cultured autologous fibroblasts added

conclusion

- all treated tracks healed
- addition of fibroblasts improved histological appearance
- pilot study in human patients in progress

Laying open and seton

factors influencing continence


Variable	Category	Continent N (%)	Incontinent N (%)	P-value
Continence at referral	Continent	42 (84%)	8 (16%)	<0.001
	Incontinent	3 (27%)	8 (73%)	
Operation type	Lay Open	29 (66%)	15 (34%)	0.07
	Seton	18 (90%)	2 (10%)	
Tract anatomy Imperial College	Intersphincteric	5 (62%)	3 (38%)	0.08
	Low TS	14 (93%)	1 (7%)	
	Mid/High TS	21 (64%)	12 (36%) St Mark's	Hoenital

and Agademic Last

9 new/worse impairment (7 minor)

15 patients (30%) impaired continence at FU (12 minor)
Outcomes: incontinence

- Fully continent
- Impaired continence unchanged
- □ New minor incontinence
- New urgency/pad usage

Imperia

the message

- many high, complex, tertiary referred fistulae can be
 - safely laid open, with
 - low risk of recurrence, and
 - acceptable risk of, mostly minor, further impairment of continence
- type of surgery and continence at referral are associated with healing and final continence

- There is a compromise to laying open
 - CONTINENCE

Or

–QUALITY OF LIFE

fistula recurrence but not continence score leads to worse quality of life

- SF36, St Mark's Continence Score
- 146 fistulas, 33 recurrent and 51 loose seton at presentation
 - mean age 45 (18-87), 47 women
- 1 in 5 urgency pre-op; 1 in 3 urgency post-op
- reduced quality of life (p<0.05) associated with:
 - fistula; recurrence; secondary extensions; urgency
- no difference in quality of life associated with:
 - continence score; presence of loose seton

Fistulotomy

- There is no doubt that fistulotomy gives the best option for cure
- >95%
- But.....
- Everyone worries about incontinence

If we want to change the world we have to understand what we are dealing with

MRI vs. EAUS

MRI

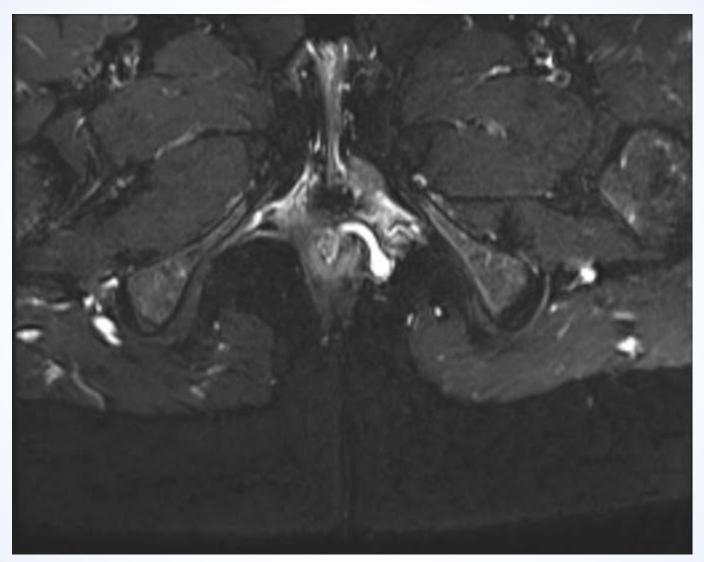
- good assessment near and far
- 'surgical' appearance
- good for repeat assessment
- easier to understand

EAUS

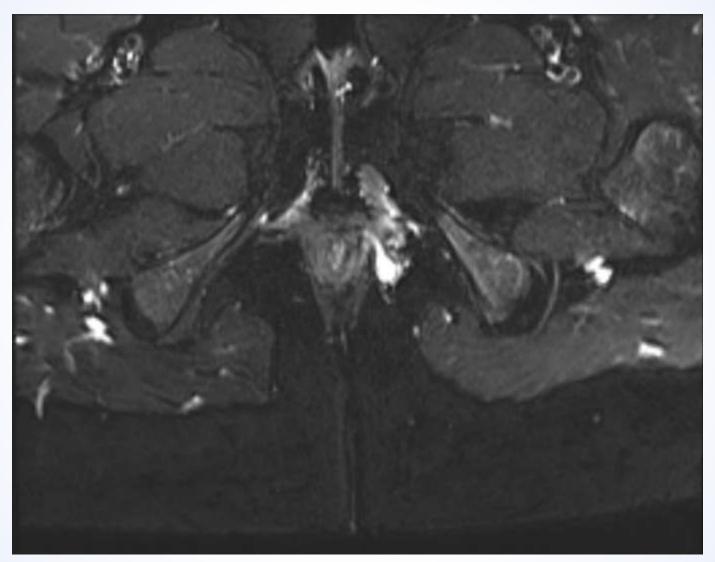
- terrific assessment of the sphincters
- identifies IO

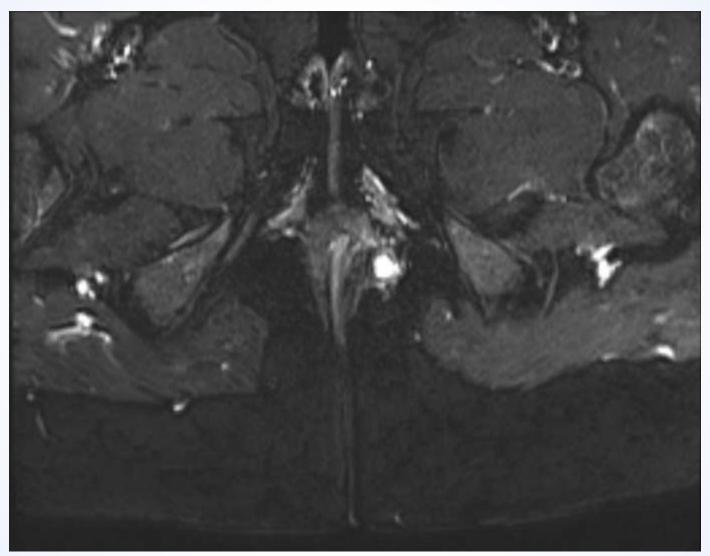
What is the optimal modality for assessment of perianal fistulating Crohn's disease?

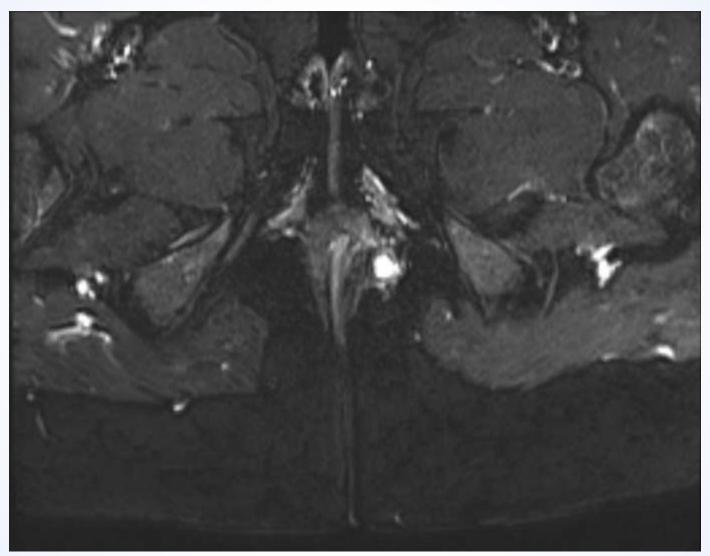
- 34 patients with Crohn's perianal fistulas
- Prospective study comparing accuracy of 3 methods
- Good agreement between all 3 modalities anal endosonography 91% accuracy MRI 87%

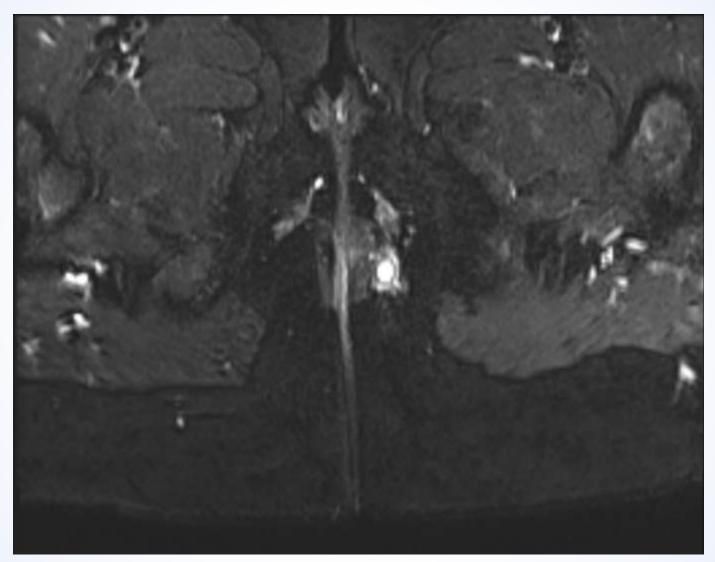

accuracy

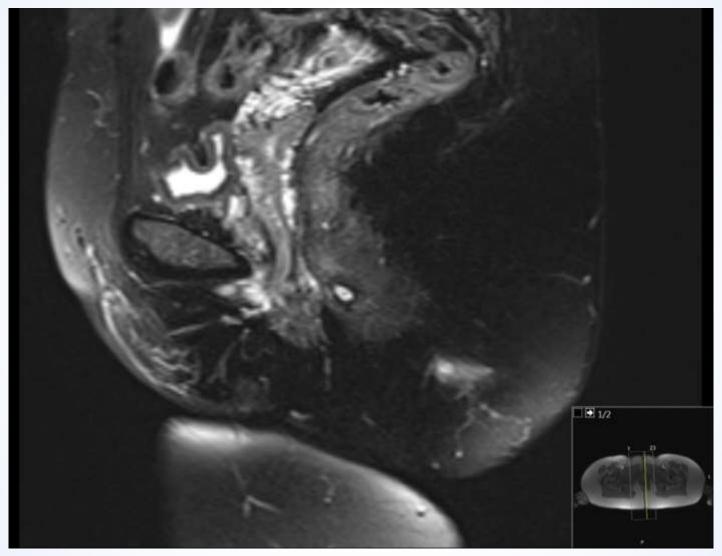
Combination of any 2 methods yielded accuracy accuracy of 100% Schwartz et al. Gastroenterology

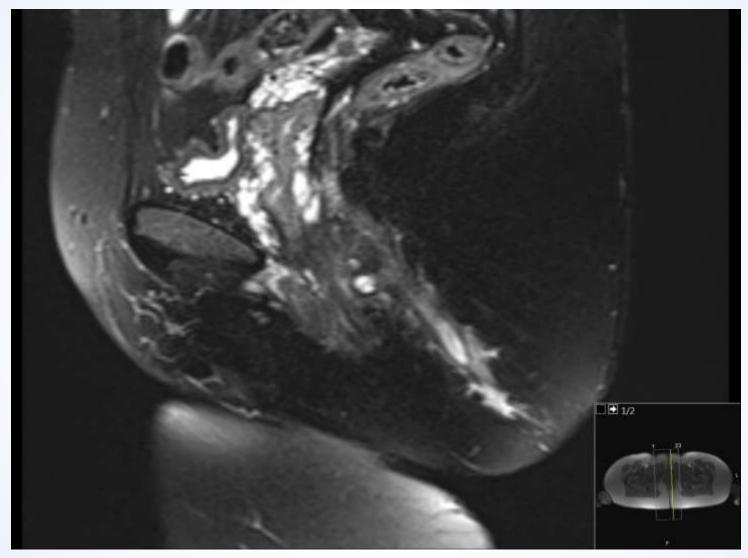

2001:121:1064-72

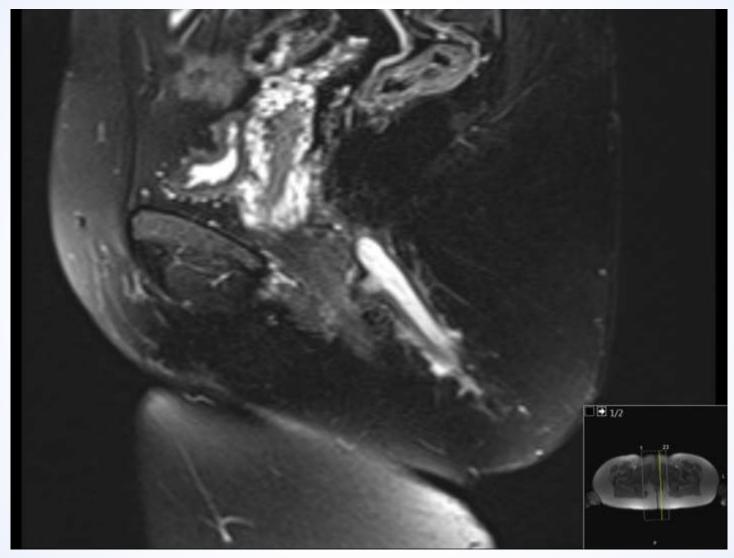


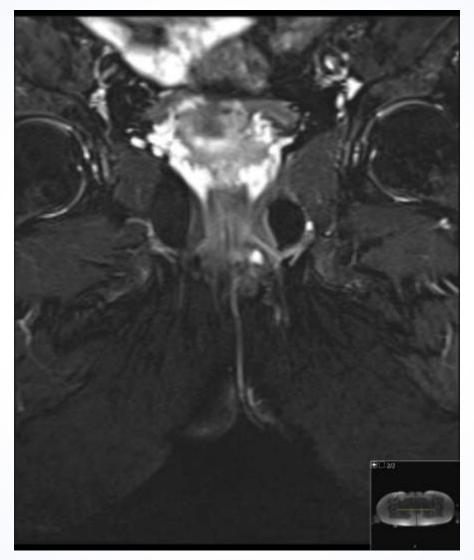




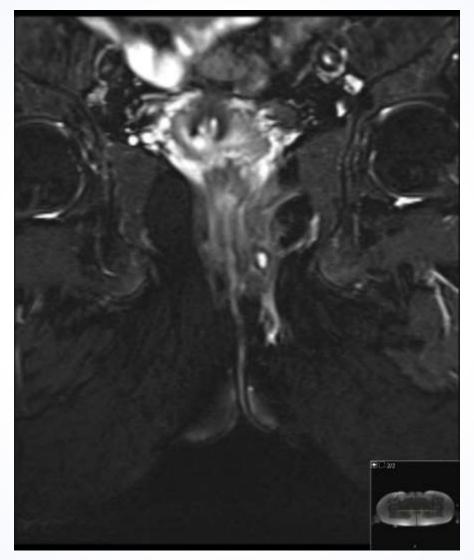




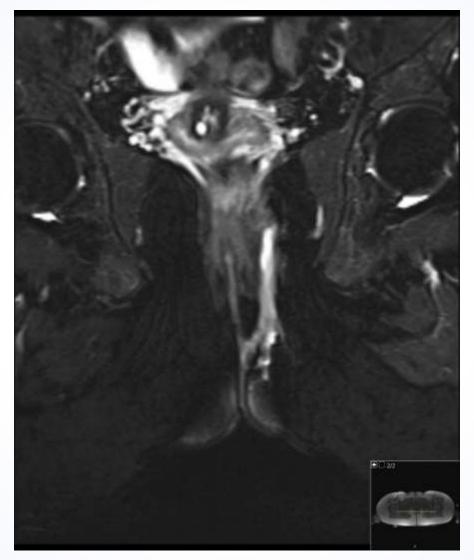




St Mark's Hospital and Academic Institute



St Mark's Hospital and Academic Institute



St Mark's Hospital and Academic Institute

imaging – where we want to be

- improved MRI
 - -3D
 - in theatre access to onlay imaging
- improved EAUS
 - correlation with ARP and clinical outcomes to develop a robust method of determining risk of LO
 - (Andy Williams at GKT is working on this)

3D - "looking at an old problem in a different way"

1. patient communication

informed consent

2. surgical planning

better appreciation of sepsis

3. medical education

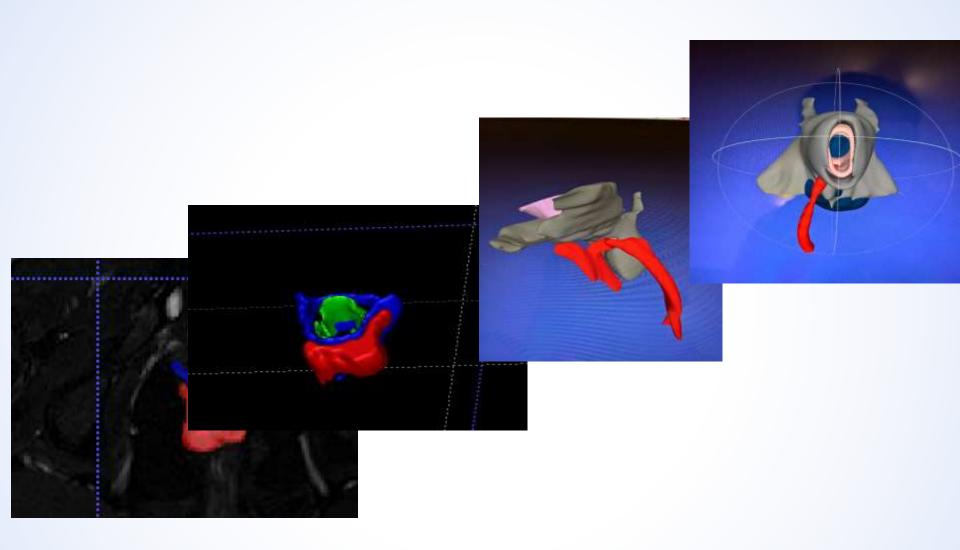
better understanding of goals, options and techniques

3D - "looking at an old problem in a different way"

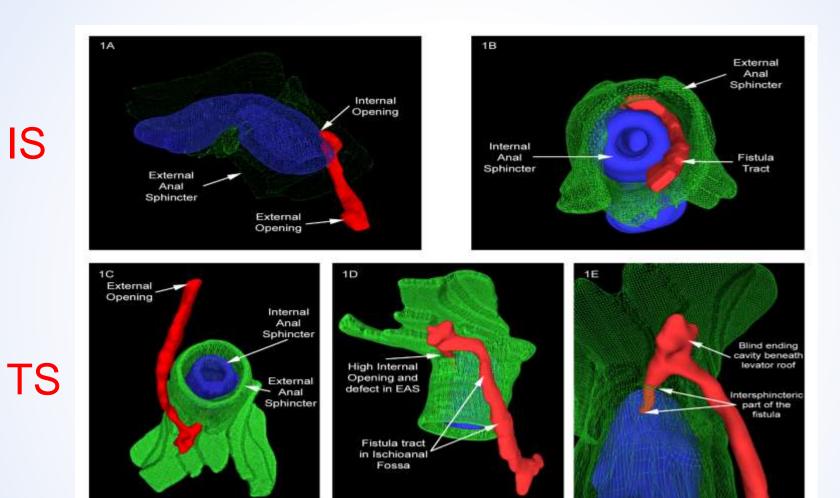
1. patient communication

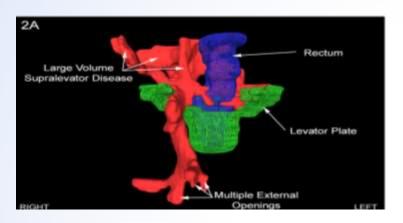
informed consent

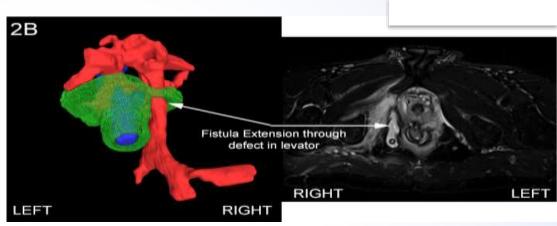
2. surgical planning

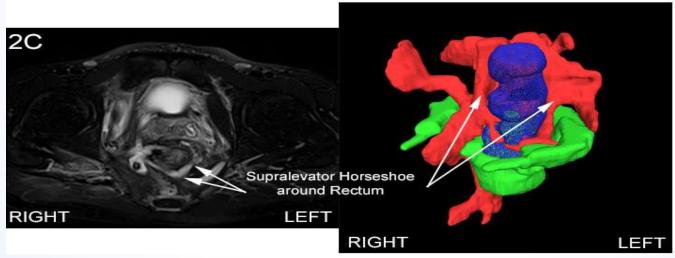

better appreciation of sepsis

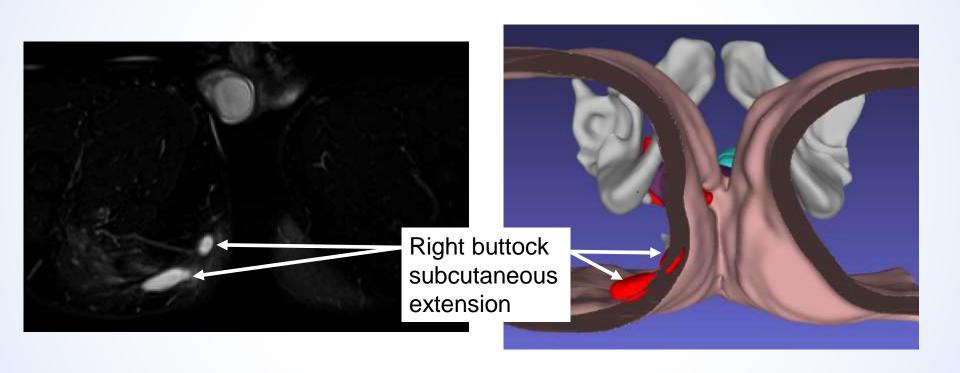
3. medical education


better understanding of goals, options and techniques

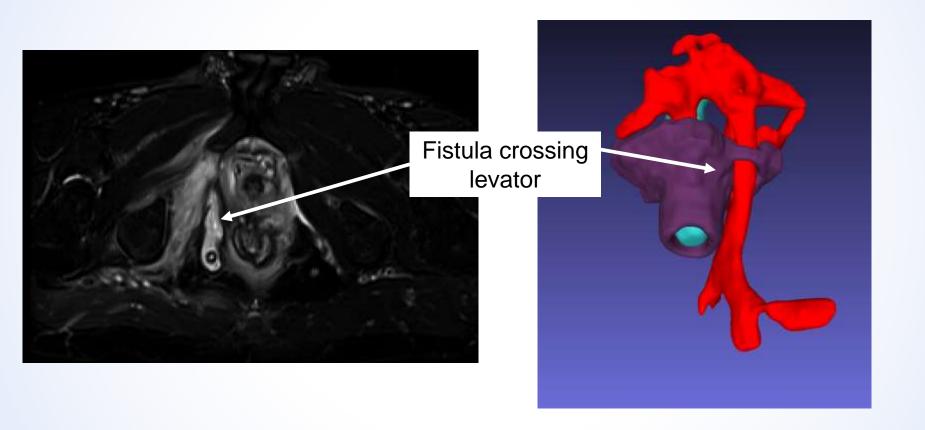


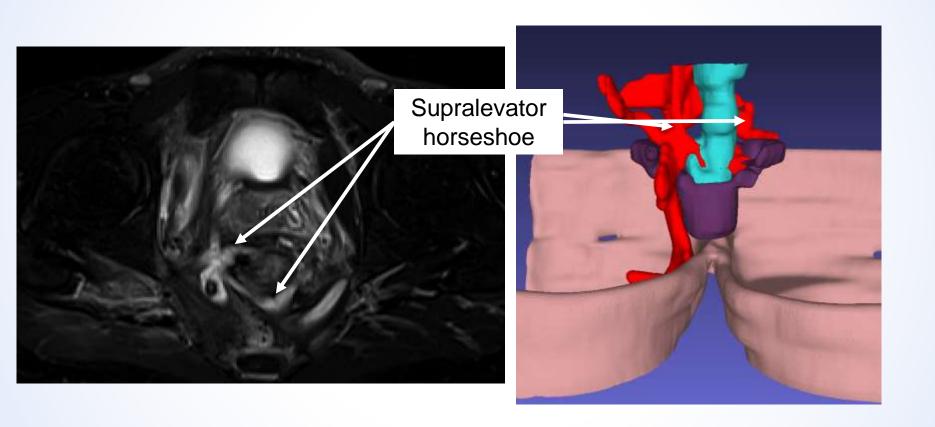


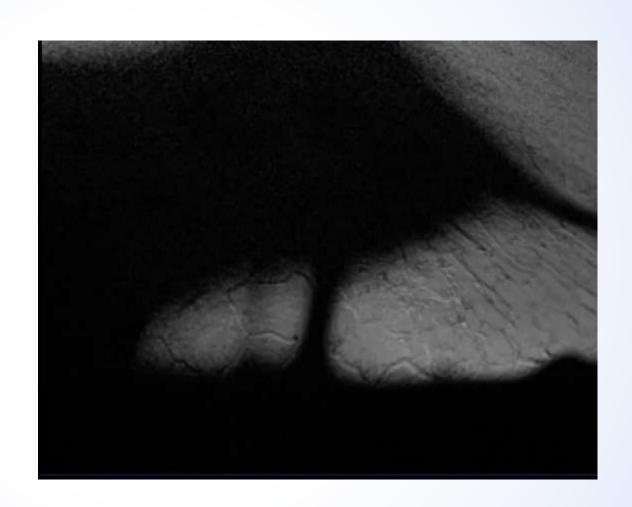

Sahnan K, Adegbola S, Tozer P et al, Ann Surg 2018

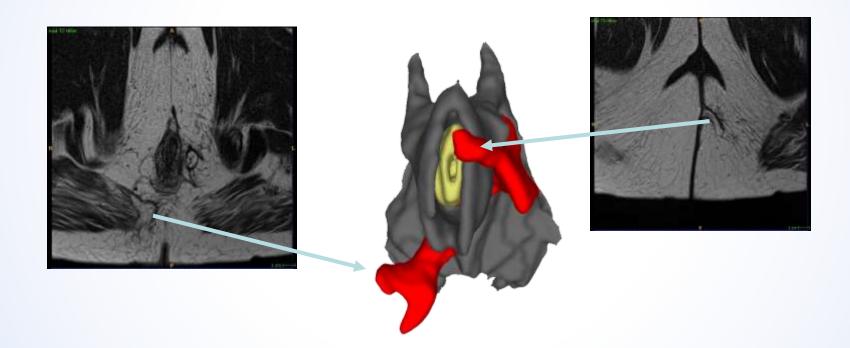


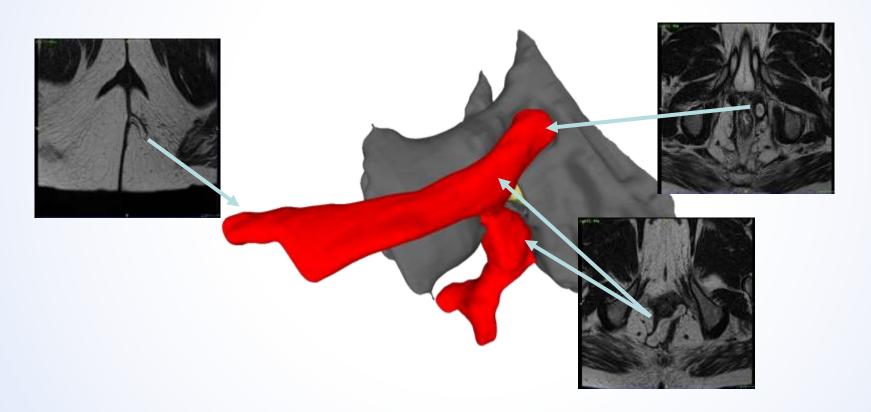
Sahnan K, Adegbola S, Tozer P, Ann Surg 2018

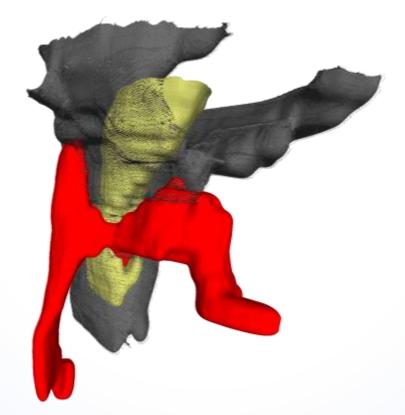







Complex fistu


Lithotomy position

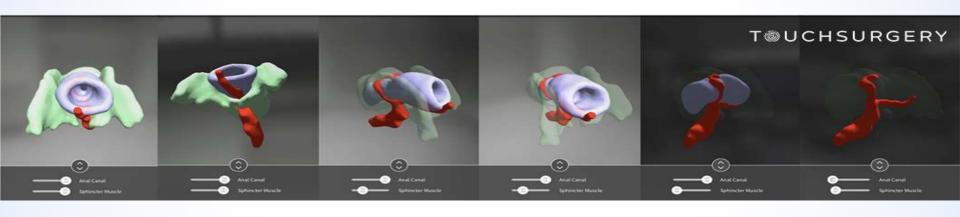

View from patient left

Visualisation

Imperial College London

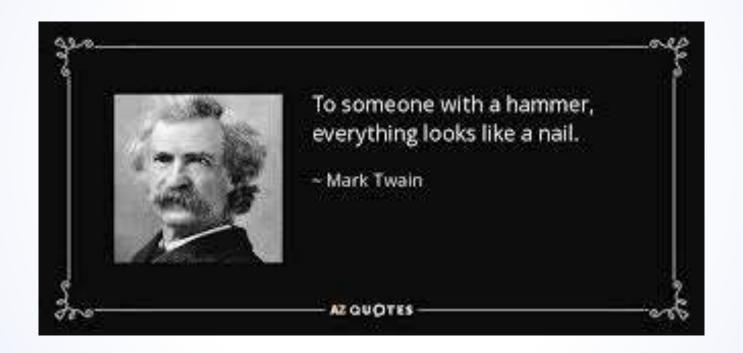
Supralevator involvement?

3D printing – PPI (St Marks's IBD patient panel)


Sahnan K, Adegbola S, Tozer P, Therap Adv Gastroenterol, 2018

Send the images to your phone

T UCHSURGERY



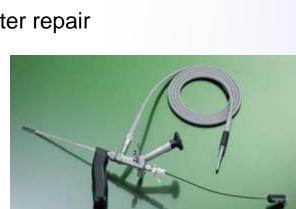
Sahnan K, Adegbola S, Tozer P, Ann Surg 2018

We have to change our concepts on how we think about fistula

What is the aim

Cure in most situations

- Setting realistic goals
- consequences of treatment



What do we have in our tool box

- clips (OTSC)
- glue
- stem cells
- plugs
- Laser (FiLaC)
- advancement flap
- immediate sphincter repair
- fistulectomy
- LIFT
- VAAFT
- cutting setons
- fistulotomy

© UEG. 2019

- So if we can't achieve a cure where do you go from there?
- The Sphincter Saving Procedures
- But they don't always work?

Or work well in the hands of one but not another

Lets go back to the toolbox

Do we know to choose the right tool for the right fistula

© UEG. 2019

If we want to choose the right tool – sphincter saving

- WE HAVE TO
- Improve understanding of pathophysiology
- Identify the common 'fistulotype'
- Understand the precursor lesion

Maybe not quite so much variety

- laying open the track
- fistulotomy
- cutting seton
- LO and repair

excising or obliterating the track

fistulectomy

FiLaC

VAAFT

disconnecting the track from the gut

- advancement flap
- LIFT
- OTSC

filling the track

glue

plug

correcting the immunopathology stem cells

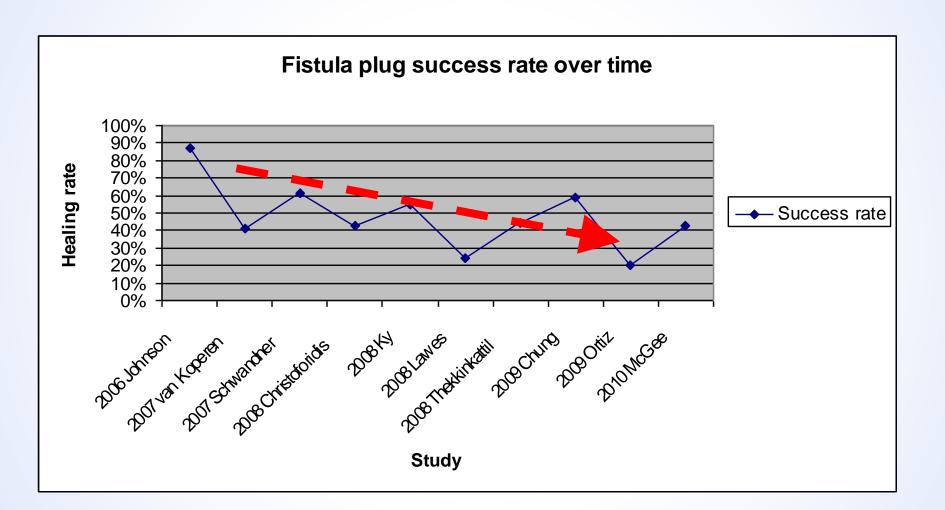
How do we unravel the literature to get the best results?

Fistula Glue

low rate of success

But is it worth trying?

	Complex only		Simple and complex	
	Healed	Not healed	Healed	Not healed
Abel [12]	6	4		
Sentovich [15]			33	15
Loungnarath [16]	12	27		
Lindsey [19]	9	13		
Cintron [20]			48	31
Zmora [23]	32	28		
Tinay [24]			19	25
Buchanan [25]	3	19		
Venkatesh [26]	18	12		
Patrij [27]			51	18
Zmora [28]	8	16		
Total	88 (42.5%)	119 (57.5%)	151 (63%)	89 (37%)



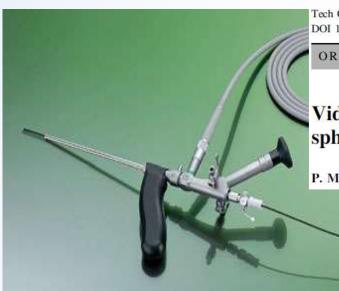
Fistula Plug

First author	Year	F/U, mo, mean/ median (range)	Successful healing			
			Overall n (%)	Crohn's n (%)	non-Crohn's n (%)	Plug extrusion (n)
Van Koperen ²⁵	2011	11 (5–27)	9/31 (29)	n/a	9/31 (29)	4
Lupinacci ⁷⁸	2010	8.1	7/12 (58)	1/3 (33)	6/9 (67)	3
Chung ⁷⁹	2010	3	3/4 (75)	3/4 (75)	n/a	1
McGee ⁸⁰	2010	24.5 (7-43)	18/41 (43.9)	n/a	18/41 (43.9)	2
Adamina ⁸¹	2010	7 (1.9–11)	6/12 (50)	n/a	6/12 (50)	n/s
Anyadike ⁸²	2010	14.2 (2-31.5)	26/36 (72.2)	1/3 (33)	25/33 (73.3)	n/s
Zubaidi ⁸³	2009	12 (6-18)	19/22 (86)	1/2 (50)	18/20 (86)	2
Schwandner ⁸⁴	2009	9	7/9 (77)	7/9 (77)	n/a	0
Schwandner ⁸⁵	2009	12	37/60 (62)	n/a	37/60 (62)	2
Ortiz ⁸⁶	2009	12	3/15 (20)	n/a	3/15 (20)	3
Wang ⁸⁷	2009	9 (3.5-22.3)	10/29 (34)	n/a	10/29 (34)	n/s
Chung ⁸⁸	2009	6	19/27 (70.4)	n/a	19/27 (70.4)	5
Christoforidis ⁸⁹	2009	14 (6-22)	12/37 (32)	n/a	12/37 (32)	7
Lawes ⁹⁰	2008	7.4	4/17 (24)	n/a	4/17 (24)	n/s
Starck ⁹¹	2008	12 (3-17)	26/41 (63)	7/9 (78)	19/32 (59)	n/s
Garg ⁹²	2008	9.4 (6.2-17.5)	15/21 (71.4)	n/a	15/21 (71.4)	5
El-Gazzaz ⁹³	2008	7.1 (1.4–22)	8/30 (26.7)	2/11 (18)	6/19 (31.6)	n/s
Echenique ⁹⁴	2008	10	14/23 (60)	n/a	14/23 (60)	1
Van Koperen ⁹⁵	2007	7 (3-9)	7/17 (41)	1/1 (100)	6/16 (37.5)	7
Champagne ²²	2006	12 (6–24)	38/46 (83)	n/a	38/46 (83)	4

FiLAC

Study	Median duration of follow-up mths (range)	Numbers	Operation time (mins)	Success
Giamundo et al. (2015)	30 (6-46)	45	20 (6-35)	32 (71%)
Ozurk et al. (2014)	12 (2 – 18)	50	-	41 (82%)
Wilhelm (2014)	7.4 (2-11)	11	-	9 (82%)
Wilhelm 2017	25.4 (6-60)	117	-	75 (64%)
Overall		223		

- Wilhelm closed the IO (usually)
- wider tracts probably fail more often
- similar success in (small n) Crohn's



complications

- recurrence
- recurrence
- recurrence (via abscess)
- pain, bleeding
- little or no incontinence reported

Tech Coloproctol (2011) 15:417–422 DOI 10.1007/s10151-011-0769-2

ORIGINAL ARTICLE

Video-assisted anal fistula treatment (VAAFT): a novel sphincter-saving procedure for treating complex anal fistulas

P. Meinero · L. Mori

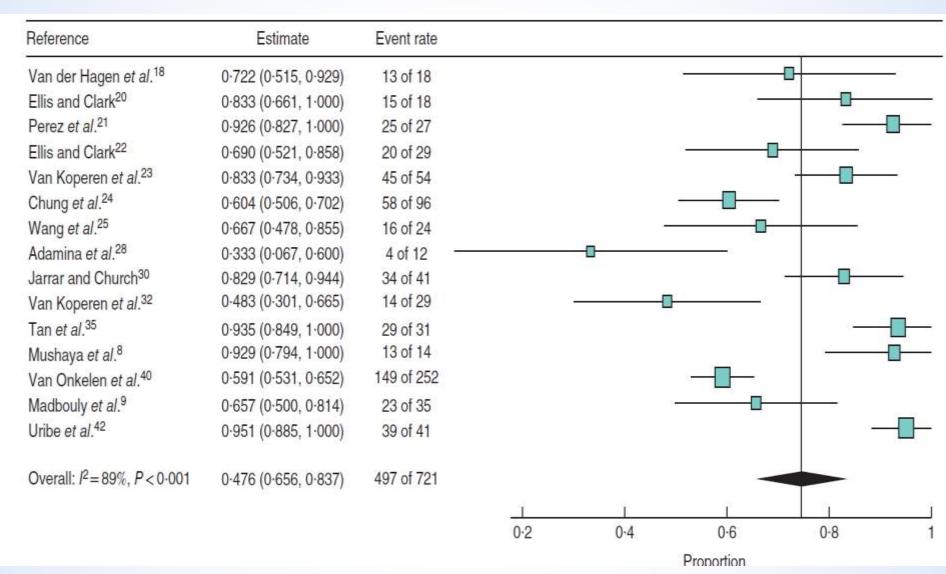
good for assessing complex, branching tracts

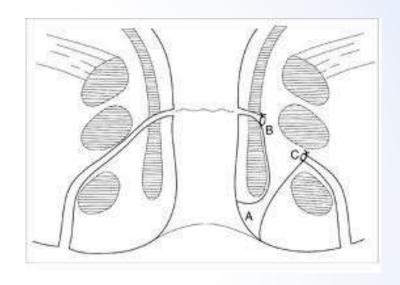
Meniero performs advancement flap

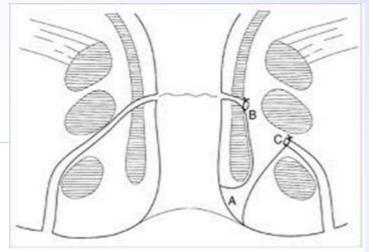
Imperial College London

St Mark's Hospital and Academic Institute

Study	Median duration of follow-up in mths (range)	Numbers	Operation time (mins)	Success (healing)
Schwandner 2012 (Ger)	8.5 (6-9)	10	22* (18-42)	9 (81%)
Kochhar et al. 2014 (Ind)	6	82	45 (30-90)	69 (84%)
Meinero et al. 2014 (Ita)	15 (6-69)	203	90 (60-120)	74%**
Mendes et al. 2014 (Bra)	5*	8	31.7 (18-45)	7(88%)
Walega et al. 2014 (Pol)	10*	18	67 (45 -135)	12(67%)
Grolich et al. 2014 (Cze)	4 (<1-30)	30	NS	N/A
Zarin et al. 2015	6	40	NS	40 (100%)***
Chowbey et al. 2015	NS	416	50 (22 – 94)	99 (73.8%?)
Overall		807		


Reference	Country	N	Age	F/U	CD	Time	Success
OTSC							
Prosst	Germany	96	50(20-80)	6	NS	32(17-66)	72(79%)
Menningen	Germany	10	41(26-69)	7(5-17)	4	41 (24-64)	7 (70%)
Gautier	France	10	43(24-86)	5(1-13)	4	25(15-35)	2 (20%)
Total		116			10		


Advancement flaps


LIFT Procedure

Average healing approximately 70%

Reference	Estimate	Event rate				199		-
Shanwani et al. ²⁷	0.822 (0.711, 0.934)	37 of 45						_
Ooi et al.33	0.680 (0.497, 0.863)	17 of 25						
Wallin et al.34	0.398 (0.298, 0.497)	37 of 93		0		•0		-
Mushaya et al.8	0.920 (0.814, 1.000)	23 of 25					-	
Liu et al.37	0.605 (0.450, 0.761)	23 of 38			-			
Lehmann and Graf ³⁸	0.250 (0.000, 0.674)	1 of 4	<u> </u>			12000		
Madbouly et al.9	0.743 (0.598, 0.888)	26 of 35				S 0		
Schulze and Ho43	0.880 (0.806, 0.954)	66 of 75						-
Overall: I ² =91%, P<0.001	0.691 (0.539, 0.843)	230 of 340						
			L	E	fi	T I	1	
			0	0.2	0.4	0.6	0.8	1
					Prop	portion		

LIFT

Would Bio LIFT add value in difficult cases?

Imperial College London

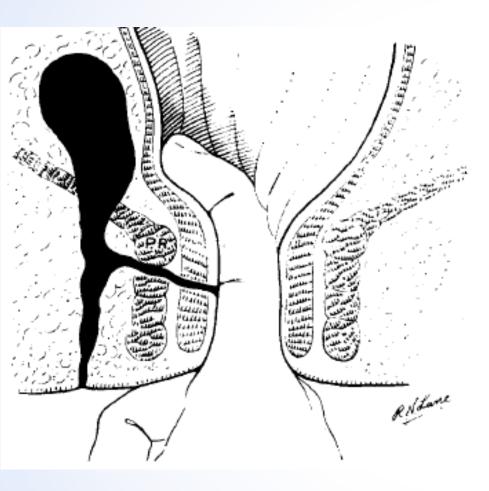
St Mark's Hospital and Academic Institute

Stem Cells

Ref.	Procedure	No. of patients treated	Healed (n)	Follow-up (mo)	Recurrence (n)	SAE (n)
García-Olmo et al ^[11]	Closure of IO. Injection in site, without fibrin glue	1	1	3	0	0
García-Olmo et al ^[12]	Cells resuspended in fibrin glue. Injection in site	9	6	12	Not specified	0
García-Olmo et al ^[13]	Closure of IO. Injection in	Fibrin glue: 25	Fibrin glue: 3	12	Fibrin glue: 0	4 (1 related to
	site	Fibrin glue + eASC: 24	Fibrin glue + eASC: 17		Fibrin glue + eASC: 2	fibrin glue, others unrelated)
García-Olmo et al ^[22]	Closure of IO. Injection in site, without fibrin glue	1	1	36	1	0
Ciccocioppo et al[25]	Four injections in site	10	7	12	0	0
Cho et al ^[34]	Closure of IO and fibrin glue. Injection in site	9	3	15	0	0
Herreros et al[14]	Closure of IO. Injection in	eASC: 64	eASC: 27	6	eASC: 0	4 unrelated to
	site	Fibrin glue + eASC: 60 Fibrin glue: 59	Fibrin glue + eASC: 24 Fibrin glue: 23		Fibrin glue + eASC: 4 Fibrin glue: 0	study treatment
Herreros et al ^[14]	Closure of IO. Injection in site	Not specified	eASC: 57% Fibrin glue+ eASC: 52.4%	12	Not specified	1 unrelated to study treatment
C 11			Fibrin glue: 37.3%	20		
Guadalajara et al ⁽²⁵⁾	Closure of IO. Injection in site	Fibrin glue: 13 Fibrin glue + eASC: 21	Fibrin glue: 3 Fibrin glue + eASC: 10	38	Fibrin glue: 1 Fibrin glue + eASC: 5	0
de la Portilla <i>et al</i> ^[17]	Closure of IO. Injection in site, without fibrin glue	24	9	4	Not specified	2 unrelated to study treatment
Lee et al ^[20]	Injection in site and fibrin glue	43	27	12	4	0

surgery – where we want to be

- the holy grail!! does it exist or really should it exist
- MIS for extensions
- augmentation to improve outcomes for SPPs



Factors to consider when treating a fistula

- Intersphincteric or Transphincteric
- How many tracts
- Size of the internal opening
- Degree of muscle damage from repeated sepsis
- some clues that may help you
- Is there faeces or air coming from the E/O
- probably big internal opening
- Amount of discharge
- maybe undrained collections

drain adequately from below? place a seton hope for improvement

can we shrink the cavity without making a big hole?

dVAAFT

FiLaC or VAAFT **Consider tract** size

Persistent or poorly regulated inflammation IL-10 IL-6 IL-17A/F

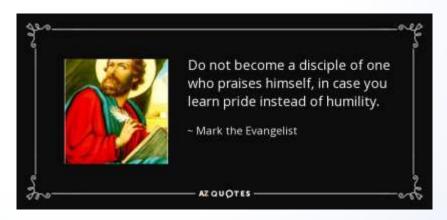
- Seton
- **Deal with secondary tracts**
 - VAAFT mainly or drain

Microbiological factors

LIFT or advancement flap or if really bad bio LIFT

Presence of physical connection with origin in 'high pressure zone'

Close the internal opening Advanment flap, dermal plug or simple closure consider



One size does not fit all Tailor the approach to the patient

Do not be a fistula evangelist

All of our products have a 110% Guarantee. If you are unhappy for any reason and we do not resolve it, We will refund 110% of the original Purchase price. Our goal is to help you and we stand behind our products.

COLOCON

SRI LANKA 2020

26th & 27th of August 2020

Faculty

Willem Bemelman - Netherlands

Antonino Spinelli – Italy

Scott Steele - USA

Amy Lightner - USA

Dieter Hahnloser - Switzerland

Carolynne Vaizey – UK

Phil Tozer - UK

Janindra Warusavitarne – UK

Samar Alhomoud - KSA

Paulo Kotze – UK

Phil Fleshner – USA

Michael Adamina - Switzerland

Danilo Miskovic – UK

Venky Munikrishnan- India

Kushal Mittal - India

Peter Irving UK

Ailsa Hart - UK